Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis.

Identifieur interne : 001C67 ( Main/Exploration ); précédent : 001C66; suivant : 001C68

Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis.

Auteurs : Karolina M. Pajerowska-Mukhtar [Allemagne] ; M Shahid Mukhtar ; Nicolas Guex ; Vincentius A. Halim ; Sabine Rosahl ; Imre E. Somssich ; Christiane Gebhardt

Source :

RBID : pubmed:18431595

Descripteurs français

English descriptors

Abstract

Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of 'quantitative resistant' versus 'quantitative susceptible' StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.

DOI: 10.1007/s00425-008-0737-x
PubMed: 18431595
PubMed Central: PMC2440949


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis.</title>
<author>
<name sortKey="Pajerowska Mukhtar, Karolina M" sort="Pajerowska Mukhtar, Karolina M" uniqKey="Pajerowska Mukhtar K" first="Karolina M" last="Pajerowska-Mukhtar">Karolina M. Pajerowska-Mukhtar</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mukhtar, M Shahid" sort="Mukhtar, M Shahid" uniqKey="Mukhtar M" first="M Shahid" last="Mukhtar">M Shahid Mukhtar</name>
</author>
<author>
<name sortKey="Guex, Nicolas" sort="Guex, Nicolas" uniqKey="Guex N" first="Nicolas" last="Guex">Nicolas Guex</name>
</author>
<author>
<name sortKey="Halim, Vincentius A" sort="Halim, Vincentius A" uniqKey="Halim V" first="Vincentius A" last="Halim">Vincentius A. Halim</name>
</author>
<author>
<name sortKey="Rosahl, Sabine" sort="Rosahl, Sabine" uniqKey="Rosahl S" first="Sabine" last="Rosahl">Sabine Rosahl</name>
</author>
<author>
<name sortKey="Somssich, Imre E" sort="Somssich, Imre E" uniqKey="Somssich I" first="Imre E" last="Somssich">Imre E. Somssich</name>
</author>
<author>
<name sortKey="Gebhardt, Christiane" sort="Gebhardt, Christiane" uniqKey="Gebhardt C" first="Christiane" last="Gebhardt">Christiane Gebhardt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18431595</idno>
<idno type="pmid">18431595</idno>
<idno type="doi">10.1007/s00425-008-0737-x</idno>
<idno type="pmc">PMC2440949</idno>
<idno type="wicri:Area/Main/Corpus">001E13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E13</idno>
<idno type="wicri:Area/Main/Curation">001E13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E13</idno>
<idno type="wicri:Area/Main/Exploration">001E13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis.</title>
<author>
<name sortKey="Pajerowska Mukhtar, Karolina M" sort="Pajerowska Mukhtar, Karolina M" uniqKey="Pajerowska Mukhtar K" first="Karolina M" last="Pajerowska-Mukhtar">Karolina M. Pajerowska-Mukhtar</name>
<affiliation wicri:level="3">
<nlm:affiliation>Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mukhtar, M Shahid" sort="Mukhtar, M Shahid" uniqKey="Mukhtar M" first="M Shahid" last="Mukhtar">M Shahid Mukhtar</name>
</author>
<author>
<name sortKey="Guex, Nicolas" sort="Guex, Nicolas" uniqKey="Guex N" first="Nicolas" last="Guex">Nicolas Guex</name>
</author>
<author>
<name sortKey="Halim, Vincentius A" sort="Halim, Vincentius A" uniqKey="Halim V" first="Vincentius A" last="Halim">Vincentius A. Halim</name>
</author>
<author>
<name sortKey="Rosahl, Sabine" sort="Rosahl, Sabine" uniqKey="Rosahl S" first="Sabine" last="Rosahl">Sabine Rosahl</name>
</author>
<author>
<name sortKey="Somssich, Imre E" sort="Somssich, Imre E" uniqKey="Somssich I" first="Imre E" last="Somssich">Imre E. Somssich</name>
</author>
<author>
<name sortKey="Gebhardt, Christiane" sort="Gebhardt, Christiane" uniqKey="Gebhardt C" first="Christiane" last="Gebhardt">Christiane Gebhardt</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="ISSN">0032-0935</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (immunology)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis (microbiology)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Intramolecular Oxidoreductases (genetics)</term>
<term>Intramolecular Oxidoreductases (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Oxylipins (metabolism)</term>
<term>Pectobacterium carotovorum (physiology)</term>
<term>Plants, Genetically Modified (immunology)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (microbiology)</term>
<term>Solanum tuberosum (enzymology)</term>
<term>Solanum tuberosum (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Arabidopsis (immunologie)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Intramolecular oxidoreductases (génétique)</term>
<term>Intramolecular oxidoreductases (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutagenèse par insertion (MeSH)</term>
<term>Oxylipines (métabolisme)</term>
<term>Pectobacterium carotovorum (physiologie)</term>
<term>Solanum tuberosum (enzymologie)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (immunologie)</term>
<term>Végétaux génétiquement modifiés (microbiologie)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Intramolecular Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclopentanes</term>
<term>Intramolecular Oxidoreductases</term>
<term>Oxylipins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Intramolecular oxidoreductases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cyclopentanes</term>
<term>Intramolecular oxidoreductases</term>
<term>Oxylipines</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Pectobacterium carotovorum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pectobacterium carotovorum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Genetic Complementation Test</term>
<term>Genetic Variation</term>
<term>Host-Pathogen Interactions</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Insertional</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Données de séquences moléculaires</term>
<term>Interactions hôte-pathogène</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse par insertion</term>
<term>Séquence d'acides aminés</term>
<term>Test de complémentation</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of 'quantitative resistant' versus 'quantitative susceptible' StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18431595</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0935</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>228</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>293-306</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-008-0737-x</ELocationID>
<Abstract>
<AbstractText>Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of 'quantitative resistant' versus 'quantitative susceptible' StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pajerowska-Mukhtar</LastName>
<ForeName>Karolina M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mukhtar</LastName>
<ForeName>M Shahid</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guex</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Halim</LastName>
<ForeName>Vincentius A</ForeName>
<Initials>VA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rosahl</LastName>
<ForeName>Sabine</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Somssich</LastName>
<ForeName>Imre E</ForeName>
<Initials>IE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gebhardt</LastName>
<ForeName>Christiane</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>DQ369735</AccessionNumber>
<AccessionNumber>DQ369736</AccessionNumber>
<AccessionNumber>DQ369737</AccessionNumber>
<AccessionNumber>DQ369738</AccessionNumber>
<AccessionNumber>DQ369739</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.3.-</RegistryNumber>
<NameOfSubstance UI="D019746">Intramolecular Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.3.99.6</RegistryNumber>
<NameOfSubstance UI="C021377">hydroperoxide isomerase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019746" MajorTopicYN="N">Intramolecular Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016973" MajorTopicYN="N">Pectobacterium carotovorum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18431595</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-008-0737-x</ArticleId>
<ArticleId IdType="pmc">PMC2440949</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2007;58(3):555-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):199-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Aug;173(4):2237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16783002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Aug;4(4):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Oct;13(10):2191-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):177-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4938-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1594598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2006 May;100(5-6):1075-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5473-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Apr;13(4):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10755306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Dec;85(4):1073-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15625113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2002 Mar;32(3):592-3, 596-8, 600 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11911662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 29;277(48):46051-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Dec;8(12):2309-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8989885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(10):892-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 May 31;296(5573):1649-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12040182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):883-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16899083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Oct;18(10):1107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16255250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1126-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10781077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2000;919:148-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11083106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 May;11(5):254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):567-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12100478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 May;31(2):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 30;305(5684):665-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):711-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Sep 5;1584(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1186-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):306-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Sep 17;305(5691):1786-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Oct;90(10):1112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 May;70(5):3013-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15128563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2004 Jun;47(3):475-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Sep;24(9):364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10470037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:79-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15970273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Cologne</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Gebhardt, Christiane" sort="Gebhardt, Christiane" uniqKey="Gebhardt C" first="Christiane" last="Gebhardt">Christiane Gebhardt</name>
<name sortKey="Guex, Nicolas" sort="Guex, Nicolas" uniqKey="Guex N" first="Nicolas" last="Guex">Nicolas Guex</name>
<name sortKey="Halim, Vincentius A" sort="Halim, Vincentius A" uniqKey="Halim V" first="Vincentius A" last="Halim">Vincentius A. Halim</name>
<name sortKey="Mukhtar, M Shahid" sort="Mukhtar, M Shahid" uniqKey="Mukhtar M" first="M Shahid" last="Mukhtar">M Shahid Mukhtar</name>
<name sortKey="Rosahl, Sabine" sort="Rosahl, Sabine" uniqKey="Rosahl S" first="Sabine" last="Rosahl">Sabine Rosahl</name>
<name sortKey="Somssich, Imre E" sort="Somssich, Imre E" uniqKey="Somssich I" first="Imre E" last="Somssich">Imre E. Somssich</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Pajerowska Mukhtar, Karolina M" sort="Pajerowska Mukhtar, Karolina M" uniqKey="Pajerowska Mukhtar K" first="Karolina M" last="Pajerowska-Mukhtar">Karolina M. Pajerowska-Mukhtar</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18431595
   |texte=   Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18431595" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024